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Temperature fluctuations over a heated 
horizontal surface 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 21 July 1958) 

The previous work of Thomas (1956) on the turbulent convection over a single, 
heated, horizontal surface has been extended using improved methods of analysis 
of the temperature fluctuations, and it has been possible to measure the distribu- 
tions of mean temperature, the mean squares of the temperature fluctuation, the 
temperature gradient and the rate-of-change of temperature, and the statistical 
distributions of these quantities. These measurements were made for three dif- 
ferent values of the convective heat flux, and the results are consistent with the 
dimensional consequences of assuming that the convection near the surface is 
independent of the distant boundaries and determined by the heat flux and the 
viscosity and conductivity of the fluid. 

The most striking feature of the observations is that the fluctuations of 
temperature, temperature gradient, and rate-of-change of temperature, all show 
periods of activity, characterized by large fluctuations, alternating with periods 
of quiescence with comparatively small ones. Both the proportion and frequency 
of occurrence of the active periods decrease with increasing distance from the 
surface and they probably occur when rising columns of hot air pass through the 
point of observation. The quiescent periods occur when the point of observation 
lies outside the columns, and analysis of the statistical distributions of the various 
fluctuations shows that, during these periods, they are nearly independent of 
height. It is concluded that the quiescent fluctuations are typical of the turbulent 
convection far from the surface while the active fluctuations are the manifesta- 
tion of the convective processes arising near the rigid boundary. These processes 
may be described as the detachment of columns of hot air from the edge of the 
conduction layer and the erosion of these rising columns by contact with the 
surrounding air which is in vigorous turbulent motion. Since the variations of the 
intensities with height is dominated by the contributions of the active periods, it 
is not surprising that no agreement is found with the predictions of the similarity 
theory which assumes the convection to be independent of the conduction layer 
at a sufficient distance from it. The Malkus theory of turbulence, which empha- 
sizes dependence on the conduction layer, is in qualitative agreement with this 
inferred mechanism of the convection and is in quantitative agreement with the 
observed distribution of mean temperature. A brief discussion is given of the effect 
of a horizontal shearing motion on the convection and of the relation of these 
measurements to measurements of the temperature distribution in the earth’s 
boundary layer with upward flux of total heat. 
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1. Introduction 
Although the convective motion over a heated, horizontal surface is a simple 

form of turbulence with desirable properties of homogeneity and symmetry, there 
have been very few investigations of the fluctuations in velocity and temperature 
that underlie the gross phenomenon of heat transport. Malkus (1954a) was able 
to estimate turbulent velocities by observing the motion of suspended particles 
and Thomas (Thomas & Townsend, 1957) measured intensities and autocorrela- 
tion functions of the temperature fluctuations, but the experimental material is 
very meagre by comparison with our knowledge of the turbulent motion in shear 
flow and it was considered useful to continue and extend the earlier measurements 
of Thomas. Another, less general, reason for this investigation was a desire to test 
as fully as possible the predictions of a novel theory of turbulence proposed by 
Malkus (1954b, 1956), which seeks to relate the transport properties of the fully 
turbulent flows to the neutrally stable disturbances of the corresponding laminar 
flows and which, without introducing disposable constants, has succeeded in 
predicting the mean velocity distribution for turbulent flow in a two-dimensional 
channel with reasonable accuracy. Although the absence of arbitrary constants 
makes the theory attractive, its basic assumptions are neither immediately 
convincing nor open to direct experimental verification and the possibility of 
deriving similar results using established principles of similarity is an obstacle to 
its acceptance. However, applied to convection between parallel horizontal 
planes, the Malkus theory predicts a distribution of mean temperature quite 
different from that predicted by arguments of similarity and that the convection 
is everywhere dependent on the viscosity and conductivity of the fluid. Both the 
massive evidence that turbulent transport processes become independent of 
viscosity and conductivity for large Reynolds numbers of flow and the details of 
the theory suggest that, if this happens, it is because the whole convection depends 
on processes occurring close to the surface where thermal conductivity dominates 
the heat transfer and viscous stresses the turbulent motion. So the Malkus theory 
may be tested in two ways, by comparison of the observed and predicted varia- 
tions of mean temperature with height and by looking for evidence of an intimate 
connexion between local temperature and processes occurring near the surface. 
On the other hand, the similarity theory, which successfully describes many 
aspects of turbulent flow in channels, rules out dependence on processes occurring 
in the conduction layer and predicts definite functional forms for the variations 
of mean temperature, mean square temperature fluctuations, and a number of 
other quantities. 

The experiments to be described form a detailed study of the temperature 
fluctuations in a practical system of natural convection that approximates to 
the ideal one considered in the theory. The particular characteristics of the 
fluctuations that were measured are simply those that could be measured 
conveniently without excessive complication of equipment or observational 
difficulty. 
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2. Notation 
The ideal system, to which the experimental arrangement is an approximation, 

is convection over a single, infinite, horizontal surface in a perfect gas without 
other boundaries, and the motion and temperature field may be described using 
a system of rectangular co-ordinates in which the Oz axis is vertical and the origin 
is in the surface. The convection should be statistically homogeneous with respect 
to variation of the horizontal co-ordinates. The following notation will be used: 

V 

k 

P 
H 

K 

N 

are the velocity components parallel to Ox, Oy and Oz 

u 2  + v2 + w2, 
are the mean pressure and the pressure fluctuation from the 

mean, 
are the mean absolute temperature and the temperature fluctua- 

tion from the mean, 
is the kinematic viscosity, 
is the thermal conductivity, 
is the thermometric conductivity, 
is the fluid density, 
is the constant upward flux of total heat, 

is a constant flux of buoyancy, 

respectively, 

is a scale of length, 

is a scale of velocity, 

is a scale of logarithmic temperature, 

is the absolute temperature at the surface, 
is the ambient or reference temperature, measured at a point 

is the frequency with which the instantaneous temperature 

is the probability that the instantaneous value of a fluctuating 

is the probability density function for the quantity. 

40 cm. above the surface, 

passes through its mean value from below, 

quantity shall exceed x, 

It may be shown that zo, uo and 8, are scales whose variation is sufficient to 
describe the change in the convection with different heat transfers, provided that 
the motion and temperature field close to the surface are unaffected by the 
distant boundaries and by the mechanism of removal of heat from the system 
and that fluids of only one Prandtl number are used. Measurements of heat 
transfer (e.g. Malkus, 1954a) and of mean temperature near the heated surface 
show that the variation of mean temperature is concentrated in a shallow surface 
layer and is effectively independent of the other boundaries. This might suggest 
that the detailed structure of this surface layer is also determined by the heat flux 
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and the fluid properties, and then the only change produced by a change in heat 
flux is the alteration in the characteristic scales. How far this is true is a question 
that the present work may help to answer. 

3. Experimental arrangements 
The practical convection system is an open-topped box, with bottom a hori- 

zontal and uniformly heated plate, 30 cm x 40 cm whose construction has been 
described before (Thomas & Townsend 1957). The sides of the box are of hard- 
board 56 cm high, and are intended to ensure that convective transport of heat is 
as far as possible by turbulent transport and as little as possible by steady 
streaming motions. The boundary conditions of this system are defined by the 
surface temperature and the room temperature if we ignore unwanted but 

\Convection plume 

FIGURE 1. Diagrammatic section of the convection box. (The dashed lines indicate the 
form of the steady circulation inferred from the horizontal distribution of mean 
temperature.) 

unavoidable disturbances from air-currents in the room, while the ideal system 
is defined by surface temperature and by the temperature a t  infinity. For the 
purpose of relating experimental measurements to the ideal system, i t  is better to 
use as ‘temperature at infinity’ the temperature at  the base of the convection 
plume rising from the open top of the box rather than the room temperature. In  
these experiments, the temperature at  a point 40 cm above the surface (16 cm 
below the open top) was measured with a mercury-in-glass thermometer and used 
as a reference temperature and as an approximation to the effective ‘temperature 
at infinity ’. During the course of a run it was not unusual for the room temperature 
and the reference temperature to change by one or two degrees and it was 
necessary to correct the observed mean temperatures for this drift. This was done 
by assuming that all temperatures in the system changed by the same amount and 
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subtracting from any observed temperature the excess of room temperature 
over 20.0"C. In  all the experiments the room temperature lay between 17' 
and 23°C. 

With this arrangement the moat likely causes of deviations from ideal behaviour 
are the presence and finite height of the side-walls of the box. The simple presence 
of side-walls may make itself felt in two ways, by restrictions on horizontal move- 
ment of the fluid and by steady circulations of large scale induced by unequal 
temperature gradients near the walls and in the centre of the box. It is not very 
likely that horizontal motion could be seriously restricted in the layer of depth 
8 cm in which all measurements were made, but there is some evidence of a weak 
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FIGURE 2. Distribution of mean temperature for z / z o  less than 12. ( 0 ,  heat flux A ;  
x ,  heat flux B ;  0, heat flux G.) 

circulation with cold air descending near fhe centre of the box and warm air 
rising near the edges (figure 1). Whether this circulation is due to the side-walls, 
or whether it is an eddy induced by the convection plume from the open top, is 
difficult to determine but it is believed to be of too low an intensity to be of much 
significance for the flow as a whole. It may be pointed out that the measurements 
of Thomas showed good agreement between the heat flux computed from the 
heat loss over the whole plate and the heat flux computed from the local tempera- 
ture gradient near the middle of the plate, a result that is unlikely if the circula- 
tory motion carries with it appreciable heat. The finite height of the side-walls 
might lead to two types of disturbance, transient disturbances by uncontrolled 
draughts in the room and a steady disturbance induced by the convection plume. 
The relative importance of these will depend on the absolute strength of the 
convection plume. 

All the results of the measurements are presented in the non-dimensional form 
appropriate to the ideal system, with units the non-dimensional scales of length, 
velocity and logarithmic temperature that may be constructed from the buoyancy 
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flux Q, the gravitational acceleration and the thermometric conductivity. 
Logarithms of the absolute temperature are used instead of ordinary temperature, 
a procedure which is known to lead to better correlation between convection 
experiments with widely different temperature loadings and which has some 
theoretical justification (Thomas & Townsend 1957). A general inspection of 
figures 2-10, which show the variation with height of a variety of mean values 
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FIGVRE 3. Distribution of mean temperature for z/zo greater than 8. ( 0 ,  heat flux A ; 
x , heat flux B; 0 ,  heat flux C . )  
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connected with the temperature field for three different values of the heat flux, 
shows that the results of dimensional analysis of the ideal system are valid for the 
experimental system except within the conduction layer and at considerable 
distances from the surface. The discrepancies within the conduction layer (z/zo 
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FIGURE 5. Distribution of root-mean-square temperature fluctuation for z/zo greater than 8. 
( 0. heat flux A ;  x ,  heat flux B ;  0, heat flux C.)  

less than three) are caused by the variation with temperature of thermometric 
conductivity and kinematic viscosity (the variations are most clearly distin- 
guishable in the measurements of temperature fluctuations and temperature 
gradients in figures 4 and 6), which the dimensional analysis assumes to have the 
same values in all parts of the flow, an approximation nearly valid outside the 
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conduction layer but not inside it for these surface temperatures. The dis- 
crepancies that become noticeable for large values of z/zo are probably due to 
deviations from ideal behaviour induced by the open top, in particular by air- 
currents in the room. Consistently with this conclusion, the measurements for 
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FIGURE 7. Distribution of root-mean-square temperature gradient for z/zo greater than 8. 
( e, heat flux A ;  x , heat flux B ;  0, heat flux C.) 
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FIGURE 8. Distribution ofroot-mean-squarerate ofchangeoftemperatureforz/z,less than 12. 
( e, heat flux A ;  x ,  heat flux B ;  0, heat flux C.) 

the smaller heat fluxes and the weaker convection plumes deviate from the 
measurements for the largest heat flux at  heights that increase as the' heat flux 
increases. For the lowest heat flux, deviations begin at  z/zo = 20 (the exact value 
depends on the quantity measured) but for the intermediate flux deviations 
begin at  z/zo = 40. Below these values no systematic departures from dimensional 
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similarity are to be found, and it is reasonable to suppose that the observations 
for the largest heat flux represent the ideal system sufficiently well for z/zo less 
than sixty. Within the conduction layer, the ideal behaviour is best represented 
by observations at the lowest heat flux and the curves have been drawn with this 
in mind. 
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FIGURE 9. Distribution of root-mean-square rate of change of temperature for z/zu 
greater than 8. ( @, heat flux A ;  x , heat flux B ;  0, heat flux C.) 
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FIGURE 10. Distribution of mean frequency of zero temperature fluctuation. (Full line 
represents theoretical values if 6’ and aO/at are statistically independent and normally 
distributed.) 

4. Use of a resistance thermometer to measure temperature fluctuations 
The measurement of temperature in a turbulent motion with small or zero mean 

velocity presents the special problem of interference with the motion by the 
thermometer element and its supports. In the earlier work, the thermometer 
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element was supported by parallel wires stretched horizontally across the con- 
vection box, an arrangement convenient for measurements between parallel 
planes. In this series of measurements, the flow is open from the top and the 
element is carried by a vertical length of hypodermic tubing, 1 mm in diameter 
and 15 cm long, itself supported by a brass tube 3 mm in diameter and 15 cm long. 
The whole is carried by a bridge whose height above the surface can be adjusted 
by micrometer screws. The sensitive element is a short length (1-2mm) of 
platinum wire, of diameter 2.5 p, etched from Wollaston wire and supported by 
pieces of unetched wire of diameter 25 p and length about 5 mrn (figure 1). In  
still air the time constant of such a wire is about 0.5 msec, and there is no doubt 
that the resistance of the element responds to temperature fluctuations more 
rapidly than the electrical circuit can respond to the changes in resistance. The 
wire current was sufficiently low to avoid appreciable ohmic heating. 

The question is, how closely does the temperature measured by this arrange- 
ment resemble the temperature in the absence of the thermometer element and 
its support? Differences could arise in two ways, from the influence of the 
thermometer on the whole motion and from inability of the thermometer to 
measure temperature accurately, especially if there is appreciable conduction of 
heat along the supports or if the approach of fluid from certain directions is 
impeded by the supports. The effect of the thermometer assembly on the whole 
motion is difficult to assess, and the reasons for considering it to be negligible are 
that these measurements of mean temperature agree well with earlier measure- 
ments using the horizontal support and that measurements with a variety of 
thermometer heads are internally consistent. For similar reasons, heat conduc- 
tion by the supports and support interference are believed to cause errors less than 
the statistical uncertainty of the measurements. Radiative exchange of heat with 
the surroundings has a negligible effect on the equilibrium temperature of wires 
of diameter 2-5 p. 

In  order to obtain useful approximations to the mean values, it was necessary 
to take averages over periods of 10 min, and this was conveniently done by con- 
verting the electrical output of the resistance thermometer into pulses whose 
repetition rate was a linear function of the wire resistance. The electrical circuits 
used to do this and to make the other measurements are described in another 
paper (Townsend 1959). 

5. Measurement of defining parameters 
The ideal convection flow considered in the theory may be specified either by 

the flux of total heat or by the temperatures at the heated surface and at infinity. 
The definition of ‘temperature at infinity ’ in the experimental arrangement has 
been discussed already, and the reference temperature is considered to be a good 
approximation to it. The surface temperature was measured in two ways, by 
thermocouples embedded in the dural plate and by extrapolation of the measure- 
ments of mean temperature to the position of the surface. This position can be 
established with considerable accuracy from measurements of the root-mean- 
square of the temperature fluctuation, a quantity that is proportional to distance 
from the surface within the conduction layer (figure 4). 
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The convective flux of total heat may be measured directly by subtracting from 
the total heat loss of the surface the computed loss by radiation, but the earlier 
work showed that these values were in good agreement with values computed 
from the observed gradient of mean temperature near the surface, using the 
relation 

H = - k B  z=o , 

and that there was little to choose between the apparent accuracy of each set of 
values. In  view of the uncertainty in the radiative heat loss, it was decided to use 
the second method which has the advantage of measuring all the parameters with 
one basic instrument, the platinum wire resistance thermometer. 

H x lo2 Q U b  
Tl Ta (W. log- Ti (cm 20 (cm ty log-  7'1 

Run ("C) ("C) cm-2) To sec-I) 0 0  (cm.) sec-I) T o  
B* 93.8 27.0 5.60 0.2011 0.157 0.0658 0.0887 2.39 3.06 
C* 86.6 27.0 4.95 0.1817 0.139 0.0600 0.0914 2.32 3.03 
F 2 t  94.0 27.7 5.26 0.1995 0.148 0.0628 0.0903 2.36 3.18 
F 5  91.0 27.0 5.15 0.1932 0.145 0.0618 0.0905 2.34 3.13 
F l t  63.1 23.9 2.78 0.1240 0.078, 0.0392 0.1044 2.00 3.16 
F 4  60.3 23.9 2.54 0.1154 0.071, 0.0365 0.107 1.95 3.16 
F 3  42.8 22.2 1.85 0.0674 0.0334 0.0207 0.128 1.61 3.26 

* These runs were made with light cardboard walls of height 35 cm. 
t These runs were made with side-walls of height 28 cm. 
Note. All measurements have been corrected for deviations of room temperature from 

20 "C. 
TABLE 1 

Heat 2 0  UO TI - 20 Q 
flux 60 (cm ) (em sec-l) ("(3 (cm sec-l) 
A 0.0618 0.0905 2.34 71.0 0.145 
B 0.0365 0.107 1.95 43.1 0.0714 
C 0.0207 0.128 1.61 22.8 0.0334 

TABLE 2 

Table 1 shows the results of these measurements for seven distinct runs with 
various surface temperatures and experimental arrangements, together with the 
computed values of the buoyancy flux Q, of the characteristic scales of logarith- 
mic temperature, length and velocity, and of the heat transfer coefficient, 
log TJT, (kg/Q3)'. It will be noticed that the measured values of the heat transfer 
coefficient have a mean value of 3.14 -t 0.03 and a standard deviation of 2.3 yo, and 
that no correlation with heat flux or wall height is visible. This result is further 
confirmation of the hypothesis that the convective heat loss is determined by the 
motion and structure of a thin surface layer, too thin to be affected by external 
influences peculiar to the particular experimental arrangement. 

The runs, F 3, F 4, F 5, were ma.de with standard values of the electrical power 
input to the plate assembly, and the values of the scales computed from these runs 
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were used in the reduction of later measurements with the same power inputs and, 
presumably, the same heat fluxes. In  some of the later runs temperature measure- 
ments were made in the conduction layer and the assumed values of the convective 
heat loss were confirmed. For convenience, the characteristic scales for the three 
standard heat fluxes, which will be distinguished by the letters, A ,  B, C, are 
collected in table 2 .  

6. Mean temperatures and intensities of temperature fluctuations 
Although the measurement of mean temperature was not the first object of the 

work, a large number of measurements were produced in the course of measuring 
mean squares of the temperature fluctuation and some of these are shown in 
figures 2 and 3. Within the limitations already mentioned, the consistency of 
measurements for different heat fluxes is good and the experimental points lie 
around a common curve that is consistent with the earlier measurements although 
the range of z/zo is much greater. The scatter of the observations is such that they 
might be represented for z/zo greater than ten by a power law, 

with almost any value of n between 0.3 and 1.5. If we select n = 1 ,  corresponding 
to the Malkus theory, the best representation is 

for z/zo greater than 8, although an extreme possibility is 

(6.3) 

for z/zo greater than 10. The additive constant in each of these expressions corre- 
sponds with an effective ambient temperature (or 'temperature at infinity') 
somewhat above the reference temperature. If we select n = 4, as predicted by 
the similarity theory, the best representation is 

for z/zo greater than 8. Representation of the results by (6.4) is decidedly less 
satisfactory than representation by (6.2), and the multiplicative constant is very 
different from the one inferred from the measurements of Swinbank (Priestley 
1954, 1955, 1956) which indicate that 

It is only expected that the variation of mean temperature should be described 
by a power law if nearly all the heat flux is carried by turbulent movements, i.e. if 
Ow $ - K ( a T / a z ) .  The ratio of the two sides of this inequality is easily computed 
using any of the possible representations, and the condition is strongly satisfied 
for z/zo greater than 8 ( - ~[aT /az] /G  = 0.04 for z/zo = 8).  

- 
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Mean squares of the temperature fluctuations were measured at the same time, 
with the results shown in figures 4 and 5. For z/zo less than 1.5, the root-mean- 
square of the fluctuation is nearly proportional to z/zo, although the constant of 
proportionality depends on the temperature loading, log TJT,. For the lowest 
heat flux C, which corresponds most nearly with the condition of very small 
temperature loading assumed in the basic theory, 

The fluctuation intensity rises to a maximum value near z/zo = 3 and then 
decreases in a manner adequately described by 

for z/zo greater than 6." It is not possible to represent the measurements by the 
power-law predicted by the similarity theory 

The points in figures 4 and 5 include observations with single and with double 
thermometer elements, and the close agreement shows that increased size and 
complexity of the thermometer has little effect on the measured fluctuations. It 
is therefore reasonable to believe that the resistance thermometer detects tem- 
perature fluctuations resembling closely those that would occur in the absence of 
the thermometer. 

7. Gradients and rates-of-change of temperature 
Temperature gradients were measured with a thermometer head with two 

sensitive elements, each about 1.5 mm long and held parallel to each other with 
a horizontal separation of 0.212 em. If the elements are connected in adjacent 
arms of the Wheatstone bridge, the output of the bridge is a linear function of the 
resistance ratio and, if the lead resistance is negligible and the temperature 
fluctuations small compared with the absolute temperature, of the temperature 
difference. The mean square of the temperature difference is determined in the 
usual way and the mean square gradient is computed by dividing by the square of 
the separation. The extent to which the finite difference resembles the local 
gradient was investigated in a second series of measurements in which the 
separation of the elements was 0.461 em. Since, for small separations, 

* No significance attaches to the exact value of the exponent which has been rounded 
off to the nearest 0.05. These and following power-laws (equations 7.3-4) merely represent 
in a compact form the experimental measurements over the range of observation and may 
have no validity outside this range. 
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a comparison of the two series of measurements enables the possible error to be 
determined. It was found to be rather less than the scatter of the observations 
and has been neglected. Figures 6 and 7 show the root-mean-squares of the 
temperature gradients obtained in this way. The variation with height is generally 
similar to that of the root-mean-square temperature fluctuation, although the 
effects of temperature loading at  small values of z/zo are rather larger. For the 
lowest heat flux, 

for z/zo less than 1.5, while for the largest values of z/zo a good representation is 

5 T60 [ (Tr ax = 0-30($0'75 (zlz, > 6). (7.3) 

The similarity theory predicts an exponent of - 8. 
Intensities of the time-rate of change of temperature were measured using an 

electrical differentiating circuit with the results shown in figures 8 and 9. For z/zo 
greater than 6 ,  the measurements are described by 

The similarity theory predicts an exponent of - +. 
A convenient method of obtaining information about the time-rate of change 

of a fluctuating quantity is to measure the frequency with which it passes through 
a particular value, usually the mean value (see, for example, Liepmann 1952). It 
ma,y 5e shown (Rice 1944,1945) that the frequency N with which the temperature 
fluctuation passes through its mean value from below is 

N = /omP(o IS)  8d8,  (7.5) 

where P(O I 8) is the joint probability distribution function for the temperature 0 
and the time derivative of the temperature 6. If the temperature fluctuation and 
its rate of change are statistically independent, 

N = SP(0)M 

and, if both are normally distributed, 

Measurements of this rate have been made and are compared with direct measure- 
ments of [62/e2]& in figure 10. Good agreement is found only at  large and at  small 
values of z/zo, and it is inferred that substantial deviations from a normal dis- 
tribution may exist. 

- -  
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8. Statistical distributions of temperature 
Comparison of figures 3 and 5 will show that the root-mean-square temperature 

fluctuation is very roughly equal to the difference between the mean and reference 
temperatures for all values of z/zo greater than five, so it is not surprising that 
measurements of the statistical distribution of instantaneous temperature show 
that ‘cold’ air occurs with significant frequency in all parts of the flow outside 

eo-’ log T+e 
T, 

FIGURE 11. Statistical distributions of instantaneous temperature for large values of z/z,,. 

the conduction layer. The way in which this happens is more surprising. The most 
obvious feature of figure 11, which shows the probabilities of occurrence of 
temperatures greater than set values, is that the low temperature parts of the 
curves are nearly identical in shape, particularly for the larger values of z/zo. This 
behaviour suggests that S(x), the probability that the temperature should 
exceed x, is of the form, 

S(x) = (1 -Y)~,(x)-tY4&)7 (8.1) 

where S, is independent of height and y is a duration factor which decreases with 
increase in distance from the surface.* The interpretation of (8.1) is that the 
temperature at  a point may vary in two distinct ways, either with small fluctua- 
tions and a low mean temperature or with large fluctuations and a high mean 
temperature. More definite evidence of the existence of two modes of fluctuation 
is to be found in measurements of the statistical distributions of temperature 
gradients and rates of change, but it is also strongly suggested by visual observa- 
tions of the behaviour of the measuring equipment. Comparatively infrequent 
‘active ’ periods during which the temperature oscillates wildly between wide 
limits alternate with extended periods of quiescence during which the tempera- 

* See figure 23, in which S(  1 -y)-l is plotted as a function of temperature. 
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ture is low and varies very little. The relative duration and frequency of the active 
periods decreases with increasing height. 

Within and near the conduction layer, it  is not possible to distinguish two 
components of the fluctuation, and, for z/zo less than 2, the integrated prob- 
ability function is nearly of the form 

X(T + e)  = s, - et1iOg __ T + H ) ,  (: Tl 
(8.2) 

as expected in a region dominated by the effects of conduction. Figure 12 shows 
distributions of temperature fluctuations in and near the conduction layer plotted 
against8C11og[(T+ B)/T,] and (z/zo)8&110g[(T+ 8)/T1]. It maybenoticed (i) that, 
for z/zo = 2.76, B&llog [(T + O)/T,] is observed to assume all values between - 0.1 
and +2.64, which is 80% of the total range of temperature, and (ii) that the 
statistical similarity of temperature fluctuations within the conduction layer 
expressed by equation (8.2) is most persistent for the higher temperatures, i.e. the 
smaller temperature gradients. 

9. Statistical distributions of the space and time derivatives of the 
temperature fluctuation 

The statistical distributions of temperature gradient and rate of change of 
temperaturesuggest strongly theexistenceof two modes of fluctuation. Figures 13 
and 14, which show on a Gaussian probability plot the distributions of tempera- 
ture gradient, %/ax, for z/zo = 7.1 and 22.6, are naturally interpreted as compo- 
site distributions. The behaviour at  large deviations will be determined by the 

S 
FIGURE 13. Statistical distribution of temperature gradient, aO/ax, at z/zo = 7.1 on a Gaus- 
sian probability plot. ( 0 ,  original measurements; x , S/y + S, (normally distributed); 
0, (S  - yS,)/( 1 - y )  the residual component.) 

component of larger variance and it is found to be Gaussian within the experi- 
mental uncertainty. Assuming this component to be normally distributed, it is 
possible to determine its variance and its relative duration from the measurements 
at  large deviations and to obtain the other residual component by subtracting the 

15 Fluid Mech. 5 
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inferred intense component from the measured probabilities. The steps in the 
analysis are indicated on the diagrams and the results of the process, which has 
been applied to all the measured distributions of aB/ax, are summarized in 
figures 15 to 17. These show the variation with height of the relative duration and 
intensity of the intense (‘ active ’) component and of the distribution of the residual 
component. 

S 
FIQURE 14. Statistical distribution of temperature gradient, aO/az, a t  z/zo = 22.6 on 
a Gaussian probability plot. ( 0 ,  original measurements; x , Sly + S, (normally distri- 
buted) ; 0, (S  - yS,)/( 1 - y )  the residual component.) 
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FIauRE 15. Variation with z/z0 of the relative duration, y, of periods of activity. 

It is not possible to analyse the distributions of aB/at in the same way, as these 
distribution functions do not behave normally at  large deviations, approaching 
zero or unity less rapidly than a normal distribution (figure 18). If the local 
Reynolds and PQclet numbers of the turbulent motion are large, the time rate of 
change of temperature is almost entirely due to convection of temperature 
gradients by the fluid velocities past the point of observation. In  an appendix it is 
shown that the convection of a normally distributed field of temperature gradient 
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by a normally distributed and uncorrelated field of velocity leads to rates of 
change of temperature with a distribution function of the form 

p , ( 4  = 41x1 HP'(i /XI), (9 .1)  

where Hcl)(iz) is the Bessel function of imaginary argument tabulated by Jahnke 
& Emde (1933) .  For large positive values of x, 

The measurements are of the integrated distribution function, corresponding 
with 

----- 
I I I 

20 40 60 80 
ZIZO 

FIGURE 16. Variation with z/z0 of the root-mean-square of the active component of ae/ax. 
(The dashed line indicates the directly observed values of [ ( a O / a ~ ) ~ ] *  given in figure 7, and the 
horizontal line the intensity of the quiescent component.) 

999 
3 

FIGURE 17. Statistical distributions of the residual components of aO/ax, i.e. what is left 
after subtracting the active component and renormalizing. 

16-2 
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and the observations of the distributions of %/at for large deviations are in much 
better accord with this type of asymptotic behaviour than the behaviour of 
a normal distribution. 

1.2 
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S 
FIGURE 18. Gaussian probability plot of the statistical distribution of aO/at 

for z/zo = 22.6. 

S 
FIGURE 19. Statistical distribution of aO/at for z/zo = 7.1 

on a 'convection' probability plot. 

The measured distributions of %/at have been analysed into two components, 
the more intense one being distributed according to the ' convection ' distribu- 
tion (9.1) and having an intensity and relative duration determined by the 
observed probabilities of large deviations. In  figures 19 and 20, two measured 
distributions have been plotted using the analogue of the Gaussian probability 
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plot (i.e. one on which a distribution of the form (9.1) appears as a straight line), 
and the results of the analysis are shown in figures 15, 21 and 22 and in table 3. 
At the smaller values of z/zo, the distributions of aB/at become asymmetrical and, 

S 
FIGURE 20. Statistical distribution of @/at for z/zo = 22.6 on a ‘convection’ probability 
plot. ( 0 ,  original measurements; x , Sly -+ S, (normally distributed); 0 ,  (S-yS,)/(l-y) 
the residual component). 
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FIGURE 21. Variation with z/z0 of the root-mean-square of the active component of afj/at. 

(The dashed line indicates the directly observed values of [(ae/at)z]a given in figure 9, and 
the horizontal line the intensity of the quiescent component.) 

- 
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although they preserve the same asymptotic behaviour for both large positive 
and large negative deviations, it is not possible to analyse the distribution for 
z/zo = 7.1 and barely possible for z/zo = 11.5. The sense of the asymmetry is that 
large negative values of %/at are more probable than large positive ones. 

0 z/zo = 17.0 
z/zo = 226 

z/zo = 336 
v d.0 = 668 

i 

10-3 10-2 lo-' 0 5  09 099 0999 
S 

-05- 

FIGURE 22. Statistical distributions of the residual components of aO/at, i.e. what is left 
after subtracting the active component and renonnalizing). 

~ ._ 

Quantity 7.1 11-5 17.0 22.6 33.6 66.8 

aO{,= 0.255 0.182 0.121 0-096 0.078 0.047 
aa Variance 0.127 0.115 0.107 0.086 0.070 0.040, 

- 0.165 0-128 0.099 0.072 0-046 
at Variance - 0.65 0.621 0.483 0.368 0.197 
aB ('= 

TABLE 3. Properties of the active components of aO/az and aO/at. 

_ _ _ . _ _ ~  

A comparison of the two sets of distributions shows that: (i) The duration 
factors inferred from the distributions of a8jax and %/at are consistent and 
decrease rapidly with increase of height. It is very likely that the 'active' com- 
ponents of a8jax and %/at are consequences of the same ' active ' periods. 

(ii) The intensities of the active components also decrease rapidly with distance 
from the surface (figures 16, 21). 

(iii) The distribution of the residual components is independent of height 
except for extreme values of the deviation with low probability of occurrence 
(figures 17, 22). The departures from normal and 'convection' distributions are 
least for the greatest heights and may be due to transition zones between the 
active and quiescent regions in the flow. The variances corresponding to the 
invariant parts of the residual components are respectively 0-0064 for aO/ax and 
0.045 for aO/at, both in the appropriate non-dimensional units. 



Temperature jluctmtions over a heated surface 231 

10. Comparison with theoretical predictions and with measurements 
in the atmosphere 

Before discussing possible structures of the convection that would be consistent 
with the observations, it  is convenient to consider the extent to which the several 
theories are confirmed by experiment. The primitive theory is that there exists 
a surface layer within which the temperature structure is uniquely determined by 
the heat flux, the gravitational acceleration and the molecular conductivity and 
viscosity. If this is true, measurements for all heat transfers should coincide if 
expressed in terms of the appropriate scales of temperature, length and velocity. 
This prediction is well confirmed by these and the previous measurements, except 
within the conduction layer and at considerable distances from the surface. * 
Deviations at considerable distances are believed to be caused by external air- 
currents and diminish as the intensity of the convection increases, while the 
deviations within the conduction layer are caused by the variation with tem- 
perature of thermometric conductivity and kinematic viscosity. A rough 
argument to establish the magnitude of the last effect is as follows. Within the 
conduction layer, eddying motions do not develop and the motion is in a critical 
state of stability. Just outside the layer, the fluid velocities are of order u, and 
the temperature differences across the layer are of order T18,, so that the stability 

~ 

criterion is of the form 
n yC - 3  = 1, 

1’c VCKC 

(10.1) 

where z, is the layer thickness, and v,, Ic, are mean values of the kinematic vis- 
cosity and thermometric conductivity in the layer. If uo and 8, are both set by the 
convection in the cooler fluid outside the layer, it  is likely that the layer thickness 
varies at some rate intermediate between proportionality to v, (uoz,/v, = constant) 
and proportionality to the $-power of vc (g~ , z ,3 (v ,~ , ) -1  = constant). Altering the 
horizontal scales of figures 4 and 6 in either of these ways removes the greater part 
of the variation with temperature loading. 

The measurements of mean temperature and, much more definitely, the 
measurements of temperature fluctuations are not reconcilable with the similarity 
theory of convection and there can be little doubt that the theory does not apply 
to convection in the laboratory. It remains to account for the opposite conclusion 
drawn from measurements in the atmosphere, and here recent work by Webb 
(1958) has made it clear that wind-shear had an effect on the earlier measurements 
of Swinbank (Priestley 1954,1955,1956). Webb’s measurements show that three 
regions may be distinguished in the earth’s boundary layer with upward transfer 
of heat: (a)  near the ground, a region of forced convection with temperature 
gradient inversely proportional to height; ( b )  farther up, a region of apparently 
free convection with temperature gradient varying as the - $-power of height and 
independent of wind-shear ; and (c )  an upper region of imperceptible temperature 
gradient. The boundaries between these regions may be expressed by critical 

* It is unlikely that the fluctuations during periods of quiescence are unaffected by the 
distant boundaries, but their contribution to the total intensities is too small to falsify 
the prediction (see 3 11). 
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values of the local Richardson number. The earlier measurements did not extend 
above the intermediate region but the existence of a third region shows that, 
although the temperature gradient may be independent of wind-shear in the 
intermediate region, this is only true for a limited range of wind-shear and 
a sufficient reduction in wind-shear will lead to transition to another type of 
convection, presumably similar to the convection over a flat surface without wind. 

The imposition of a horizontal shearing motion on homogeneous natural con- 
vection may have several effects, but two obvious ones are a transfer of energy 
from the mean flow to the turbulent motion and a restriction on the freedom of 
vertical movement of the fluid. The first tends to increase turbulent velocities 
while the second restricts the vertical scale of the convective movements, and it 
is not obvious whether the presence of a shearing motion will increase or decrease 
the temperature gradient for a given heat flux. Webb’s measurements show that 
the first effect of a moderate wind-shear is to increase the temperature gradient 
but that a condition is reached in which further increase of wind-shear is at  first 
without effect on the temperature gradient and then decreases it as the contribu- 
tion to the turbulent energy by working against Reynolds stresses becomes 
dominant. Our hypothesis is that this is caused by an initial decrease in vertical 
scale of the convective motion which is later offset by the increase in turbulent 
intensity arising from the transfer of energy from the mean flow. 

Experimental support of this hypothesis could only be obtained from detailed 
measurements of the flow, but it is interesting that the present measurements 
indicate length scales much larger (relative to height above the surface) than 
occur in forced convection through a boundary layer. The destruction of tem- 
perature fluctuations by conductivity depends on a ‘ cascade ’ process of intensi- 
fication of temperature gradients by the turbulent motion that, like the closely 
analogous process of turbulent energy dissipation proceeds a t  a rate independent 
of the viscosity and conductivity of the fluid if the Reynolds number of the motion 
is large. The rate of destruction of a@ is then 

(10.2) 

where u,, 1, are scales of velocity and length characteristic of the turbulent motion. 
This relation is analogous 

Measurements by Kistler, 
fluctuations suggest that 

to the established form for the energy dissipation, 

E = - vuiv2ui = Cu:ll,. (10.3) 

O’Brien & Corrsin (1956) of the decay of temperature 

(10.4) 

where c‘ = 0-8 and L is the integral scale of the turbulent motion. Making use of 

follows that 
the measurements of 82 and as expressed by equations (6.7) and (7.3), it 

-0.1 (G)6 (@)!I 4 = 2.04;) 
z eW ’ 

(10.5) 
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and that LIZ = 2 for the larger values of z/zo. In  forced convection through 
a turbulent boundary layer, LIZ + 0-4, relatively much smaller. Obvionsly, the 
presence of the shearing motion exercises a powerful restriction on the scale of 
the motion. 

The measurements support the Malkus theory of turbulence in that the ob- 
served distribution of mean temperature well outside the conduction layer is 
described bv 

(10.6) 

within the experimental error. It is interesting that the multiplicative constant, 
2.6, based on these more extensive measurements is nearer to the theoretical 
value,” 2.0, than that based on the earlier measurements over a more limited 
range of zlzo, and that the magnitude of the additive constant, 0.06, might have 
been inferred from a study of the distributions of temperature fluctuations 
(see 5 11). 

11. Physical description of the flow 
Possibly the most striking feature of the observations is the existence of two 

modes of temperature fluctuation, but no hint of it is to be found in either theory 
of the convection and it must be a part of the physical mechanism of the convec- 
tion that underlies the generalizations of the theory. If the temperature at  a fixed 
point has two distinct modes of fluctuations, the space occupied by the fluid at  
any instant must be divided by comparatively well-defined bounding surfaces 
into corresponding regions of ‘activity ’ and ‘quiescence ’, and the properties of 
the modes are also those of the regions. Within the active regions temperature 
fluctuations are large and the mean temperature is high, while within the quiescent 
regions the fluctuations are much smaller and the mean temperature only slightly 
above the reference temperature. The proportion of the active mode in a period of 
observation decreases fairly rapidly with increase of height and the average time 
interval between successive periods of activity increases. As the fluctuations are, 
very nearly, statistically homogeneous over horizontal planes, these observations 
mean that both the number and the total area of the sections of active regions by 
a horizontal plane decrease as the height of the plane increases and this suggests 
that the source of active regions may be warm, buoyant air-currents rising from 
the conduction layer. 

If rising currents of this sort exist, they must be very different from the 
convection plumes that rise from localized heat sources in still air because in this 
arrangement all the air is in vigorous turbulent motion. This could be inferred 
by observing that, far from the surface, active regions are too few to transport 
much of the heat flux and that the major part is necessarily carried by turbulent 

* This ‘theoretical’ value would probably not be obtained from a strict application of 
the theory, as it depends on an analysis in which the orthogonal functions used to represent 
the fields of velocity and temperature satisfy some but not all of the boundary conditions 
(Malkus 19548). It is likely that use of the correct orthogonal functions would lead to 
a somewhat larger multiplicative constant. A similar effect would arise from a subsequent 
modification of the theory (Malkus & Veronis 1958). 
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movements in the quiescent regions, but it is also possible to estimate the mean 
square of the turbulent velocity in each kind of region from the measured 
distributions of aB/ax and %/at. If the Reynolds and PBclet numbers of a turbu- 
lent motion are large and if the fluctuations of velocity and temperature gradient 
are statistically independent, it may be shown that (see the Appendix) 

(11.1) 

The first condition is satisfied for large enough values of z/zo but the second is not 
satisfied if the mean values extend over the whole time of observation without 
distinction between active and quiescent periods. Within regions of one kind, the 
distributions of aB/ax and M/at have, very nearly, the forms expected if both 
conditions were satisfied and if the distributions of velocity and temperature 
gradient were normal. Assuming this, the mean square of the turbulent velocity 
in each kind of region can be estimated, with fair accuracy for the active regions 
but with considerable uncertainty for the quiescent regions, by using the results 
of the analysis of the statistical distributions (table 3). In  the active regions, the 
root-mean-square of the velocity is about 5.5u0, almost independent of height but 
with a tendency to decrease slowly as x/zo increases. For the quiescent regions, 
variances computed from the central part of the observed distributions give 
a root-mean-square velocity of 7u0, but the uncertainty is considerable and this 
value may be too small. In  any event, the turbulent velocities are somewhat 
greater in the ‘quiescent’ periods than they are in the ‘active’ periods. 

It appears probable that active regions are formed by more or less localized 
emission of heat from the conduction layer, most likely in the neighbourhood of 
points or lines of flow ‘separation ’ where the horizontal velocity just outside the 
conduction layer happens to be small or zero. The hot air rising from such a place 
will mix rapidly with the surrounding turbulent air, but in these circumstances 
the distinction between air that has received heat from, the heat source and air 
that has not remains fairly sharp as is shown by observations of the spread of 
heat through a turbulent boundary layer (Batchelor 1954; Johnson 1955). The 
presence and persistence of ‘up-draught sites ’ has been described by Malkus 
(1954~) who observed the motion of suspended particles in acetone and water, 
and these may be identified with the hypothetical heat sources.* The persistence 
of the sources is confirmed in these experiments by the comparatively long 
duration of the active periods (of order lOsec compared with a scale time (zo/uo of 
about 0*5sec), and a possible explanation is that, once a site is established, it 
attracts to itself air heated by passage through the conduction layer which adds 
to the strength and stability of the up-draught. 

The distribution of mean temperature is determined by the extent to which 
these up-draughts penetrate the cool ‘ quiescent’ air, which is dependent on the 
initial cross-section and strength of the up-draught, both closely related to the 
thickness of the conduction layer. It is probably in this way that the scale length 

* The existence of similar up-draughts in the atmosphere with light winds and uniform 
surface heating is well recognized, but they are often identified with convection plumes 
from isolated sources of heat. 
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zo enters into the temperature distribution far from the conduction layer and that 
the viscosity and conductivity of the fluid can affect the convection at  those large 
values of z/xo, for which their direct effects are negligible. Natural convection of 
this type will occur over a rough horizontal surface and in the outer part of 
a horizontal boundary layer of sufficient thickness, and then viscosity and 
conductivity are not expected to have any direct influence on the convection. If 
this view of the way in which molecular transfer influences the convection over 
a smooth plane is correct, the distribution of mean temperature will be described 
by the same equation (10.6) but with a value of the scale length related to the 
scale of the surface roughness or, for the boundary layer, to the horizontal scale 
of the temperature fluctuations a t  the level where natural convection becomes 
dominant.* In  these circumstances, the convection depends on the quantities z,, 
g and Q, and the scales of velocity and logarithmic temperature are 

uo 8, = = @(qz,)-f. (qQz0)*7 1 (11.2) 

02 0 1  0 01 0.2 
Bo-’ log T/T, 

FIGURE 23. Statistical distributions of instantaneous temperature, plotted as (1 - S)/( 1 - y )  
to show invariance of quiescent components. 

Although the hot ‘active ’ regions are certainly characteristic of the surface 
layer and would be expected to appear whatever the dimensions of the complete 
convection box, it is most unlikely that the temperature and velocity structure 
of the cool ‘ quiescent’ regions is independent of these dimensions. It has been 
pointed out that the contributions of the ‘quiescent ’ regions to the distributions 
of temperature and temperature gradient are nearly independent of height 

* A very deep boundary layer with a constant Reynolds stress, T,,, and a constant 
upward flux of total heat has a characteristic length TI(gQ)-l (Ellison 1957) and the 
appropriate value of the scale length zo will be a multiple of this. 
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(allowing for the variation of duration factor), and this indicates that the tem- 
perature structure in these regions is characteristic of the whole flow and not just 
of the surface layer. The evidence for this statement is contained in figures 17 and 
22, and in figure 23 which shows the statistical distributions of instantaneous 
temperature at  various heights (previously given in figure 11) replotted in terms 
of this hypothesis using the duration factors inferred from analysis of the dis- 
tributions of aB/ax and %/at. The identity of form, particularly at the lower 
temperatures, and the apparent asymptotic approach to SL universal form suggest 
strongly an essential homogeneity of temperature fluctuations in the quiescent 
regions. If the fluctuations in the quiescent regions are characteristic of the whole 
flow, it will not be possible to retain strict dimensional similarity but the contribu- 
tion of these regions to the measured quantities is so small that a lack of dimen- 
sional similarity would be impossible to detect in these experiments. 

It may be noticed that the medians of all the distributions in figure 23 lies very 
close to 0;llog (T + B)/T, = 0.055, and, since there is no indication that the 
asymptotic statistical distribution of temperature is strongly asymmetric, the 
mean value a t  great heights must also lie near 0.055. This observation provides 
a meaning for the additive constant, 0.06, in the equation (10.6) which describes 
the variation of mean temperature as the mean temperature of the air far from 
the surface layer. 

Although it is difficult to compare the measurements of velocity fluctuations in 
turbulent flows of constant density with these measurements of temperature 
fluctuations, there is little doubt that the turbulent motion over a heated hori- 
zontal surface differs in kind from the turbulent motion in a boundary layer. At 
first sight, this lack of resemblance is very surprising and its confirmation is 
probably the most convincing argument in favour of the theory of turbulence 
proposed by Malkus which, with the same set of assumptions, produces all the 
accepted results for wall turbulence (Malkus 1956) and makes predictions for 
thermal turbulence that are consistent with experiment. In  the theory, the 
differences appear to arise from a difference in nature of the corresponding 
problems of laminar stability but a direct reason for the inapplicability of simi- 
larity considerations to thermal turbulence can be found by considering the 
balance of turbulent kinetic energy that would occur if the similarity theory were 
valid. To the usual approximation, the equation for the kinetic energy is 

(11.3) 

where E is the local rate of conversion of kinetic energy to heat. The similarity 

(w2F (11.4) 

where L, is proportional to x and is nearly the integral scale of the turbulent 
motion. Substitution of these relations in the energy equation leads to an expres- 

theory predicts that - 

P L, 

- 1-  - (W2)& = a(gQz)*, -pw+Qq2W = -P(w')#, 8 = -, 

sion for a, 
(11.6) 
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This quantity determines the general level of turbulent intensity and is essen- 
tially positive, while p, which describes the transport of energy from one part of 
the flow to another is positive if energy transport takes place down intensity 
gradients. Measurements in constant density flows with gradients of turbulent 
intensity show that zlLe and p are very similar in magnitude (e.g. Townsend 
1951), and it is at  least possible that pis greater than z/LE in which event equation 
(1 1.5) has no meaning except that transport of turbulent energy from one part of 
the flow to another prevents the establishment of a motion described by equations 
(11.4). If transfer of turbulent energy dominates the balance of kinetic energy, it 
is unlikely that similarity considerations, based on the notion that the surface 
layer is independent of both the conduction layer and the outer flow, are ever 
applicable. This kind of difficulty does not arise in the treatment of wall turbulence 
in which the gradient of turbulence intensity and the net energy flux are both 
negligible. 

A further point of difference has already been mentioned, the presence of 
shearing motion tending to restrict the effective scale of turbulent movements, 
which is greater in natural convection without shear. 

12. Production and destruction of temperature fluctuations 

that 
A direct consequence of the heat equation and of the symmetry of the flow is 

a2 - [(T (71 aT aT a ~ I az2 aZ aZ aZ lo2 + &T+K- -+-(+02w) = ~ - ( + 6 ' 2 ) - ~  2 -- + - . (12.1) 
a -  
at(" ) [ 

The first term, the time rate of change of &@, is zero for steady convection but has 
been included to make clear the meaning of the equation as the balance between 
the production, transport and destruction of temperature fluctuations. The 
remaining terms represent production of temperature fluctuations by interaction 
between the turbulent motion and the gradient of mean temperature, the net 
effect of convection of temperature fluctuations by turbulent movements, the net 
effect of molecular diffusion of temperature fluctuations, and the destruction of 
fluctuations by conduction. 

Well outside the conduction layer, it is likely that 

(12.2) 

and then all the terms of equation (12.1) may be calculated from the results of 
this work, excepting the one describing turbulent convection which may be 
obtained by difference. For the region z/zo > 10 then, equation (12.1) may be 
written in the non-dimensional form 

(12.3) 

where use has been made of equations (6.2) and (7.3) to represent the observed 
variations of mean temperature and mean square temperature gradient, and two 
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terms, 
aT 2 a 2  

az2  
and K - (*82), are negligible and have been omitted. The integral 

of this equation is 
__ 

0.54 (;) -0.5 + ao, (12.4) 

where a, is a constant of integration. If the power-laws used to describe the 
variations of mean temperature and mean square temperature gradient were 
valid for all large values of z/zo, the constant would necessarily be zero, but the 
double structure of the convection and the identification of the quiescent regions 
with the flow ‘ at infinity ’ make it extremely unlikely that simple power laws will 
be valid except as approximations within the range of observation. In  principle, 
the constant could be calculated by integrating equation (12.1) from the surface 
to a point in the range of validity of equation (12.4), but the accuracy of this 
procedure would be very low since most of the production and destruction of 
fluctuations takes place in the layer z/zo less than five, and small inaccuracies in 
the estimation of, say, rate of destruction would lead to an uncertainty in a, large 
compared with terms in equation (12.4). 

The main conclusion from this analysis is that the production of fluctuations 
tends to exceed the destruction over most of the fully turbulent region, and it 
follows that convection of temperature fluctuations by turbulent movements is 
of importance. 

Appendix: The relation between rate of change of temperature and 
temperature gradient in turbulent flow 

In  flows of nearly constant density, the temperature fluctuation satisfies the 
eauation 

If the Reynolds number of the turbulent motion is large, the substantial rate of 
change of temperature, DB/Dt, is usually small compared with either %’/at or 
u .V6 and the rate of change of temperature at  a point fixed in space is related 
to the local velocity and temperature gradient by 

( 2 )  

The justification for this approximation is that the greater part of the temperature 
gradient is derived from Fourier components of the temperature field with wave- 
numbers near (e/v3)& ( E  is the rate of viscous dissipation of turbulent energy),* and 
so the time rate of change of temperature by molecular conduction is of order 
~ ( e / v ~ ) * O , ,  where 6, is the ‘amplitude’ of the Fourier components which con- 
tribute to the temperature gradient. This rate should be compared with the rate 
of change due to convection of the temperature field past the point of observation 

* This discussion is only valid for fluids for which the Prandtl number, V / K ,  i near one. 
For a detailed account of the spectrum of the temperature fluctuations, see Batchelor 
(1959). 
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which is of order u , ~ , ( E / v ~ ) * ,  where uo is the root-mean-square of the turbulent 
velocity. It follows that the order of magnitude of u . V8 is greater than that 
of z)tl/Dt = K V 2 8  in the ratio U ~ K - ~ ( S / V ~ ) - ~ .  It is we11 known that E = ug/L,, 
where L, is nearly equal to the integral scale of the turbulent motion, and so the 
ratio is nearly (uoL,/v)* which is large if the Reynolds number of the motion is 
large. 

Using this approximation, we may derive the relation between the probability 
distribution functions of u, of VB and of %/at. Consistently with the assump- 
tion of large Reynolds number, we assume that the turbulent velocity and the 
temperature gradient are statistically independent and that the temperature 
gradients are isotropically distributed. * Then the distribution function for 
aeiat is 

where P2(u) du is the probability that the turbulent velocity should lie between u 
and u + du, and P3(ex) is the probability that the component of the temperature 
gradient in a particular direction (actually in the direction of u) should have the 
value 0,. It is a simple consequence of equation (3) that the product of the 
nth-order moments of the distributions of Ju( and 0, equals the nth-order 
moment of the distribution of aB/at .  In  particular, the second moments are 
related bv 

a result obtainable directly from equation (2). 
The product rule which relates the moments of the three distributions implies 

that one at least of u, VO and a8/at is not normally distributed, and the 
distribution of a8/at is the most likely to depart from normality. It is interesting 
to compute thel(distribu6ion function for ae/at, assuming that u and VB are 
normally distributed. In  real flows, it is unlikely that these last two quantities 
have exactly normal distributions but the experimental evidence suggests that 
the departures from normality may not be large. We set 

corresponding to normal distributions with variances 4 3  and 1 respectively. Then, 

* Statistical independence of turbulent velocity and temperature gradient requires 
that, if there exist regions or periods of unusually large velocity fluctuations, these are not 
associated either with unusually large or small fluctuations of temperature gradient. If 
they are, it  may still be possible to use this analysis by confining attention to regions in 
which turbulent velocity and temperature gradient have a spa,tially uniform distribution 
of fluctuations. 
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in the notation used by Jahnke & Emde (1933) for the Bessel functions of 
imaginary argument. The probability distribution function specified by equa- 
tion (6) is very different from a normal distribution as can be seen in figure 24. 

""c 

X 

FIGURE 24. Comparison of normal Gaussian and 'convection ' Probability distribution 
functions of unit variance. 

For large values of 6, 
3 15 +...I, 

in contrast to the normal distribution function 

The experimental measurements are of the probabilities that %/at and aO/ax shall 
exceed set values, i.e. 

m 

S,(@ = Idm Pl(x) dx and #,(Ox) = P3(x) ax, 

and comparison should be made with the integral of the distribution function 
defined by equation (6), 

(9) 
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Values of Xc(x) have been calculated, in part by numerical integration and in part 
using the asymptotic series, 

with the results shown in table 4. For convenience, distributions similar to those 
defined by the functions P,(x) and Xc(x) may be called 'convection' distributions. 
The most obvious difference from normal distributions is the relatively greater 
probability of occurrence of very large deviations. 

2 

0 
0.2 
0-4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

P , ( 4  
0.3183 
0.3040 
0.2782 
0-2488 
0.2194 
0.1916 
0.1660 
0.1430 
0.1226 
0.1046 
0.0890 

S , ( X )  

0.5000 
0.4378 
0.3796 
0.3269 
0.2800 
0.2390 
0.2032 
0.1723 
0.1457 
0.1230 
0.1036 

X 

2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 

TABLE 4. 'Convection ' distribution functions 

S A X )  
0.0666 
0.0427 
0.0274 
0.0174 
0.01 10 
0.00695 
0.00437 
0.00274 
0.00169 
0~00102 
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